1 / 10
00
Fill in the blank:
Let z1, z2, are complex numbers. Then, ∣(3+2i)−(1+2i)∣\left|\left(3+2i\right)-\left(1+2i\right)\right|∣(3+2i)−(1+2i)∣ ≥ ________.
∣(3+2i)∣−∣(1+2i)∣\left|\left(3+2i\right)\right|-\left|\left(1+2i\right)\right|∣(3+2i)∣−∣(1+2i)∣
∣(3+2i)∣\left|\left(3+2i\right)\right|∣(3+2i)∣
∣(1+2i)∣\left|\left(1+2i\right)\right|∣(1+2i)∣
Is the sentence true or false?
Let z=5, is complex number then Re(z)=∣z∣Re\left(z\right)=\left|z\right|Re(z)=∣z∣.
True
False
∣(2+3i)5∣=\left|\left(2+3i\right)^5\right|=∣∣(2+3i)5∣∣= _______.
(∣2+3i∣)5\left(\right|2+3i\left|\right)^5(∣2+3i∣)5
(5∣2+3i∣)5\left(5\right|2+3i\left|\right)^5(5∣2+3i∣)5
both
Let z1, z2, are complex numbers. Then, |(1+2i)(3+4i)\frac{\left(1+2i\right)}{\left(3+4i\right)}(3+4i)(1+2i)| =________.
∣(1+2i)∣−∣(3+4i)∣\left|\left(1+2i\right)\right|-\left|\left(3+4i\right)\right|∣(1+2i)∣−∣(3+4i)∣
∣(1+2i)∣∣(3+4i)∣\left|\left(1+2i\right)\right|\left|\left(3+4i\right)\right|∣(1+2i)∣∣(3+4i)∣
∣(1+2i)∣∣(3+4i)∣\frac{\left|\left(1+2i\right)\right|}{\left|\left(3+4i\right)\right|}∣(3+4i)∣∣(1+2i)∣
Let z=2+3i, is complex number then 3 ≤ |z|.
Is the number sentence true or false?
|z|=|z|.
∣(3+2i)+(1+2i)∣\left|\left(3+2i\right)+\left(1+2i\right)\right|∣(3+2i)+(1+2i)∣ ≤ ________.
∣(3+2i)∣+∣(1+2i)∣\left|\left(3+2i\right)\right|+\left|\left(1+2i\right)\right|∣(3+2i)∣+∣(1+2i)∣
Let z1, z2, are complex numbers. Then, ∣(1+2i)(3+4i)∣=\left|\left(1+2i\right)\left(3+4i\right)\right|=∣(1+2i)(3+4i)∣=________.
∣(1+2i)∣+∣(3+4i)∣\left|\left(1+2i\right)\right|+\left|\left(3+4i\right)\right|∣(1+2i)∣+∣(3+4i)∣
Let z1, z2, are complex numbers then the distance between the two points z1 and z2 in complex plane is |z1-z2|.
∣−z∣=∣z∣\left|-z\right|=\left|z\right|∣−z∣=∣z∣.
It is done.