1 / 10
00
Find sin(22.5°) using a half-angle formula
((2−2))2\frac{\left(\left(\sqrt{2-\sqrt{2}}\right)\right)}{2}2((2−2))
1/2
((2+3))2\frac{\left(\left(\sqrt{2+\sqrt{3}}\right)\right)}{2}2((2+3))
Find cos (112.5°) using a half-angle formula
−(2−2)2\frac{-\left(\sqrt{2-\sqrt{2}}\right)}{2}2−(2−2)
((2+2))2\frac{\left(\left(\sqrt{2+\sqrt{2}}\right)\right)}{2}2((2+2))
Given that tan x = 8/15 and x lies in quadrant III. Find cos(x/2) using a half-angle formula
((2−3))2\frac{\left(\left(\sqrt{2-\sqrt{3}}\right)\right)}{2}2((2−3))
417\frac{4}{\sqrt{17}}174
−117-\frac{1}{\sqrt{17}}−171
Find sin(105°) using a half-angle formula
(2−3)2\frac{\left(\sqrt{2-\sqrt{3}}\right)}{2}2(2−3)
Find cos (-5π/8) using a half-angle formula
(−2−2)2\frac{\left(-\sqrt{2-\sqrt{2}}\right)}{2}2(−2−2)
−2+1-\sqrt{2}+1−2+1
(2+3)2\frac{\left(\sqrt{2+\sqrt{3}}\right)}{2}2(2+3)
Find tan (7π/6) using a half-angle formula
Find tan(3π/8)using a half-angle formula
−2−22\frac{-\sqrt{2-\sqrt{2}}}{2}2−2−2
2−22\frac{\sqrt{2-\sqrt{2}}}{2}22−2
2+1\sqrt{2}+12+1
Given that tan x = 8/15 and x lies in quadrant III. Find sin(x/2) using a half-angle formula
(2−3 )2\frac{\left(\sqrt{2-\sqrt{3\ \ }}\right)}{2}2(2−3 )
Given that tan x = 8/15 and x lies in quadrant III. Find tan(x/2) using a half-angle formula
-4
Given that sin x = -4/5 and x lies in quadrant III. Find cos(x/2) using a half-angle formula
−25-\frac{2}{\sqrt{5}}−52
It is done.